Deploy Transformer with InferenceService¶
Transformer is an InferenceService
component which does pre/post processing alongside with model inference. It usually takes raw input and transforms them to the
input tensors model server expects. In this example we demonstrate an example of running inference with a custom Transformer
communicating by REST and gRPC protocol.
Create Custom Image Transformer¶
Implement pre/post processing with KServe Model API¶
KServe.Model
base class mainly defines three handlers preprocess
, predict
and postprocess
, these handlers are executed
in sequence where the output of the preprocess
handler is passed to the predict
handler as the input. When predictor_host
is passed, the predict
handler makes a call to the predictor
and gets back a response which is then passed to the postprocess
handler. KServe automatically fills in the predictor_host
for Transformer
and hands over the call to the Predictor
.
By default transformer makes a REST call to predictor, to make a gRPC call to predictor, you can pass the --protocol
argument with value grpc-v2
.
To implement a Transformer
you can derive from the base Model
class and then overwrite the preprocess
and postprocess
handler to have your own customized transformation logic.
For Open(v2) Inference Protocol
, KServe provides InferRequest
and InferResponse
API object for predict
, preprocess
, postprocess
handlers to abstract away the implementation details of REST/gRPC decoding and encoding over the wire.
import argparse
from kserve import Model, ModelServer, model_server, InferInput, InferRequest, logging
from typing import Dict
from PIL import Image
import torchvision.transforms as transforms
import logging
import io
import base64
import kserve
def image_transform(byte_array):
"""converts the input image of Bytes Array into Tensor
Args:
instance (dict): The request input for image bytes.
Returns:
list: Returns converted tensor as input for predict handler with v1/v2 inference protocol.
"""
image_processing = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
image = Image.open(io.BytesIO(byte_array))
tensor = image_processing(image).numpy()
return tensor
# for v1 REST predictor the preprocess handler converts to input image bytes to float tensor dict in v1 inference REST protocol format
class ImageTransformer(kserve.Model):
def __init__(self, name: str, predictor_host: str, headers: Dict[str, str] = None):
super().__init__(name)
self.predictor_host = predictor_host
self.ready = True
def preprocess(self, inputs: Dict, headers: Dict[str, str] = None) -> Dict:
return {'instances': [image_transform(instance) for instance in inputs['instances']]}
def postprocess(self, inputs: Dict, headers: Dict[str, str] = None) -> Dict:
return inputs
# for v2 gRPC predictor the preprocess handler converts the input image bytes tensor to float tensor in v2 inference protocol format
class ImageTransformer(kserve.Model):
def __init__(self, name: str, predictor_host: str, protocol: str, headers: Dict[str, str] = None):
super().__init__(name)
self.predictor_host = predictor_host
self.protocol = protocol
self.ready = True
def preprocess(self, request: InferRequest, headers: Dict[str, str] = None) -> InferRequest:
input_tensors = [image_transform(instance) for instance in request.inputs[0].data]
input_tensors = np.asarray(input_tensors)
infer_inputs = [InferInput(name="INPUT__0", datatype='FP32', shape=list(input_tensors.shape),
data=input_tensors)]
infer_request = InferRequest(model_name=self.model_name, infer_inputs=infer_inputs)
return infer_request
Please see the code example here.
Transformer Server Entrypoint¶
For single model you just create a transformer object and register that to the model server.
if __name__ == "__main__":
if args.configure_logging:
logging.configure_logging(args.log_config_file) # Configure kserve and uvicorn logger
model = ImageTransformer(args.model_name, predictor_host=args.predictor_host,
protocol=args.protocol)
ModelServer().start(models=[model])
For multi-model case if all the models can share the same transformer you can register the same transformer for different models, or different transformers if each model requires its own transformation.
if __name__ == "__main__":
if args.configure_logging:
logging.configure_logging(args.log_config_file) # Configure kserve and uvicorn logger
for model_name in model_names:
transformer = ImageTransformer(model_name, predictor_host=args.predictor_host)
models.append(transformer)
kserve.ModelServer().start(models=models)
Configuring Logger for Serving Runtime¶
Kserve allows users to override the default logger configuration of serving runtime and uvicorn server. You can follow the logger configuration documentation to configure the logger.
Build Transformer docker image¶
Under kserve/python
directory, build the transformer docker image using Dockerfile
cd python
docker build -t $DOCKER_USER/image-transformer:latest -f custom_transformer.Dockerfile .
docker push {username}/image-transformer:latest
Deploy the InferenceService with REST Predictor¶
Create the InferenceService¶
By default InferenceService
uses TorchServe
to serve the PyTorch models and the models can be loaded from a model repository in cloud storage according to TorchServe
model repository layout.
In this example, the model repository contains a MNIST model, but you can store more than one model there.
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: torch-transformer
spec:
predictor:
model:
modelFormat:
name: pytorch
storageUri: gs://kfserving-examples/models/torchserve/image_classifier/v1
transformer:
containers:
- image: kserve/image-transformer:latest
name: kserve-container
command:
- "python"
- "-m"
- "model"
args:
- --model_name
- mnist
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: torch-transformer
spec:
predictor:
pytorch:
storageUri: gs://kfserving-examples/models/torchserve/image_classifier/v1
transformer:
containers:
- image: kserve/image-transformer:latest
name: kserve-container
command:
- "python"
- "-m"
- "model"
args:
- --model_name
- mnist
Note
STORAGE_URI
is a build-in environment variable used to inject the storage initializer for custom container just like StorageURI
field for prepackaged predictors.
The downloaded artifacts are stored under /mnt/models
.
Apply the InferenceService transformer-new.yaml
kubectl apply -f transformer-new.yaml
Expected Output
$ inferenceservice.serving.kserve.io/torch-transformer created
Run a prediction¶
First, download the request input payload.
Then, determine the ingress IP and ports and set INGRESS_HOST
and INGRESS_PORT
.
SERVICE_NAME=torch-transformer
MODEL_NAME=mnist
INPUT_PATH=@./input.json
SERVICE_HOSTNAME=$(kubectl get inferenceservice $SERVICE_NAME -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" -d $INPUT_PATH http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict
Expected Output
> POST /v1/models/mnist:predict HTTP/1.1
> Host: torch-transformer.default.example.com
> User-Agent: curl/7.73.0
> Accept: */*
> Content-Length: 401
> Content-Type: application/x-www-form-urlencoded
>
* upload completely sent off: 401 out of 401 bytes
Handling connection for 8080
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< content-length: 20
< content-type: application/json; charset=UTF-8
< date: Tue, 12 Jan 2021 09:52:30 GMT
< server: istio-envoy
< x-envoy-upstream-service-time: 83
<
* Connection #0 to host localhost left intact
{"predictions": [2]}
Deploy the InferenceService calling Predictor with gRPC protocol¶
Comparing with REST, gRPC is faster due to the tight packing of the Protocol Buffer and the use of HTTP/2 by gRPC. In many cases, gRPC can be more efficient communication protocol between Transformer and Predictor as you may need to transmit large tensors between them.
Create InferenceService¶
Create the InferenceService
with following yaml which includes a Transformer and a Triton Predictor.
As KServe by default uses TorchServe
serving runtime for PyTorch model, here you need to override the
serving runtime to kserve-tritonserver
for using the gRPC protocol.
The transformer calls out to predictor with V2 gRPC Protocol by specifying the --protocol
argument.
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: torch-grpc-transformer
spec:
predictor:
model:
modelFormat:
name: pytorch
storageUri: gs://kfserving-examples/models/torchscript
runtime: kserve-tritonserver
runtimeVersion: 20.10-py3
ports:
- name: h2c
protocol: TCP
containerPort: 9000
transformer:
containers:
- image: kserve/image-transformer:latest
name: kserve-container
command:
- "python"
- "-m"
- "model"
args:
- --model_name
- cifar10
- --protocol
- grpc-v2
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: torch-grpc-transformer
spec:
predictor:
triton:
storageUri: gs://kfserving-examples/models/torchscript
runtimeVersion: 20.10-py3
ports:
- name: h2c
protocol: TCP
containerPort: 9000
transformer:
containers:
- image: kserve/image-transformer:latest
name: kserve-container
command:
- "python"
- "-m"
- "model"
args:
- --model_name
- cifar10
- --protocol
- grpc-v2
Apply the InferenceService grpc_transformer.yaml
kubectl apply -f grpc_transformer.yaml
Expected Output
$ inferenceservice.serving.kserve.io/torch-grpc-transformer created
Run a prediction¶
First, download the request input payload.
Then, determine the ingress IP and ports and set INGRESS_HOST
and INGRESS_PORT
SERVICE_NAME=torch-grpc-transformer
MODEL_NAME=cifar10
INPUT_PATH=@./image.json
SERVICE_HOSTNAME=$(kubectl get inferenceservice $SERVICE_NAME -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" -d $INPUT_PATH http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict
Expected Output
* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 8080 (#0)
> POST /v1/models/cifar10:predict HTTP/1.1
> Host: torch-transformer.default.example.com
> User-Agent: curl/7.64.1
> Accept: */*
> Content-Length: 3394
> Content-Type: application/x-www-form-urlencoded
> Expect: 100-continue
>
Handling connection for 8080
< HTTP/1.1 100 Continue
* We are completely uploaded and fine
< HTTP/1.1 200 OK
< content-length: 222
< content-type: application/json; charset=UTF-8
< date: Thu, 03 Feb 2022 01:50:07 GMT
< server: istio-envoy
< x-envoy-upstream-service-time: 73
<
* Connection #0 to host localhost left intact
{"predictions": [[-1.192867636680603, -0.35750141739845276, -2.3665435314178467, 3.9186441898345947, -2.0592284202575684, 4.091977119445801, 0.1266237050294876, -1.8284690380096436, 2.628898859024048, -4.255198001861572]]}* Closing connection 0
Performance Comparison between gRPC and REST¶
From the following latency stats of both transformer and predictor you can see that the transformer to predictor call takes longer time(92ms vs 55ms) for REST than gRPC, REST takes more
time serializing and deserializing 3*32*32
shape tensor and with gRPC it is transmitted as tightly packed numpy array
serialized bytes.
# from REST v1 transformer log
2023-01-09 07:15:55.263 79476 root INFO [__call__():128] requestId: N.A., preprocess_ms: 6.083965302, explain_ms: 0, predict_ms: 92.653036118, postprocess_ms: 0.007867813
# from REST v1 predictor log
2023-01-09 07:16:02.581 79402 root INFO [__call__():128] requestId: N.A., preprocess_ms: 13.532876968, explain_ms: 0, predict_ms: 48.450231552, postprocess_ms: 0.006914139
# from REST v1 transformer log
2023-01-09 07:27:52.172 79715 root INFO [__call__():128] requestId: N.A., preprocess_ms: 2.567052841, explain_ms: 0, predict_ms: 55.0532341, postprocess_ms: 0.101804733
# from gPPC v2 predictor log
2023-01-09 07:27:52.171 79711 root INFO [__call__():128] requestId: , preprocess_ms: 0.067949295, explain_ms: 0, predict_ms: 51.237106323, postprocess_ms: 0.049114227